1. Consider the Gaussian probability density P(x) for the continuous variable x,

$$P(x)dx = Ae^{-a(x-x_0)^2}dx$$

Determine the normalization constant A.

- 2. Using P(x) from the previous problem, compute $\langle x \rangle$, $\langle x^2 \rangle$, and σ_x
- 3. Do the same operations as in problems 1 and 2, but for the Exponential distribution,

$$p(x)dx = ce^{-\lambda x}dx, \quad x \ge 0$$

4. According to the kinetic theory of gases, the energies of molecules moving along the x-direction are given by $\varepsilon_x = mv_x^2/2$ where m is the mass of the molecule and v_x is the velocity in the x-direction. The distribution of particles with a given velocity is given by the Boltzmann law,

$$p(v_r) = e^{-mv_x^2/2k_BT}$$

(This is sometimes called the Maxwell-Boltzmann distribution). Given that velocities can range from $-\infty$ to ∞ ,

- (a) Write the probability distribution $p(v_x)$ so that it is correctly normalized,
- (b) Compute the average energy, $\langle mv_x^2/2 \rangle$,
- (c) Find the average velocity $\langle v_x \rangle$, and
- (d) Find the average momentum $\langle mv_x \rangle$.
- 5. A biological membrane contains N ion-channel proteins. The fraction of time that any one protein is open to allow ions to flow through is q. Express the probability P(m,N) that m of the channels will be open at any given time.
- 6. Problem 16-6 from McQuarrie & Simon:

Research in surface science is carried out using ultra-high vacuum chambers that can sustain pressures as low as 10^{-12} torr. How many molecules are there in a 1.00-cm³ volume inside such an apparatus at 298 K? What is the corresponding molar volume \overline{V} at this pressure and temperature?

7. Problem 16-40 from McQuarrie & Simon:

Using the Lennard-Jones parameters given in Table 16.7, compare the depth of a typical Lennard-Jones potential to the strength of a covalent bond.

- 8. 20 points extra credit: The Central Limit Theorem
 - (a) Write a simple computer program (in whatever language you'd like) which generates the sum

$$X_N = \sum_{i=1}^N \frac{x_i}{\sqrt{N}}$$

where $\{x_1,...,x_i,...x_N\}$ are independent random numbers which are uniformly distributed on the interval $-1/2 < x_i < 1/2$. Your program should compute X_N at least one million times and then construct a histogram of the X_N values you observe.

- (b) What are the maximum and minimum possible values for X_N ?
- (c) Show (numerically) that for large N the distribution of X_N values looks Gaussian.
- (d) Where does the Gaussian approximation work best? Where does it fail?

Table 16.7: Lennard-Jones parameters, ε and σ , for various substances.

Species	$(\varepsilon/k_{\scriptscriptstyle B})/K$	σ/pm	$(2\pi\sigma^3 N_A/3)$ /cm ³ ·mol ⁻¹
He	10.22	256	21.2
Ne	35.6	275	26.2
Ar	120	341	50.0
Kr	164	383	70.9
Xe	229	406	86.9
$H_{_{2}}$	37.0	293	31.7
$N_{_{2}}$	95.1	370	63.9
O ₂	118	358	57.9
CÔ	100	376	67.0
$CO_{_{2}}$	189	449	114.2
CF_{4}^{2}	152	470	131.0
CH_{J}	149	378	68.1
$C_{s}H_{s}^{\dagger}$	199	452	116.5
$C_{2}H_{6}$	243	395	77.7
$C_{3}^{2}H_{8}^{0}$	242	564	226.3
$C(CH_3)_4$	232	744	519.4