1. Problem 18-2 from McQuarrie & Simon:

Show that the difference between the successive terms in the summation in Equation 18.4 is very small for $m = 10^{-26}$ kg, a = 1 dm, and T = 300 K. Recall from Problem 18-1 that typical values of n are $O(10^9)$.

2. Problem 18-10 from McQuarrie & Simon:

Plot the fraction of HCl(g) molecules in the first few vibrational states at 300K and 1000K.

3. Problem 18-11 from McQuarrie & Simon:

Calculate the fraction of molecules in the ground vibrational state and in all excited states at 300K for each of the molecules in Table 18.2.

4. Problem 18-12 from McQuarrie & Simon:

Calculate the value of the characteristic rotational temperature Θ_{rot} for $H_2(g)$ and $D_2(g)$. (The bond lengths of H_2 and D_2 are 76.14pm.) The atomic mass of deuterium is 2.014.

5. Problem 18-13 from McQuarrie & Simon:

The average molar rotational energy of a diatomic molecule is RT. Show that typical values of J are given by $J(J+1) = T/\Theta_{rot}$. What are typical values of J for $N_2(g)$ at 300K?

6. Problem 18-14 from McQuarrie & Simon:

There is a mathematical procedure to calculate the error in replacing a summation by an integral as we do for the translational and rotational partition functions. The formula is called the Euler-Maclaurin summation formula and goes as follows:

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(n) dn + \frac{1}{2} \{ f(b) + f(a) \} - \frac{1}{12} \left\{ \frac{df}{dn} \bigg|_{n=a} - \frac{df}{dn} \bigg|_{n=b} \right\} + \frac{1}{720} \left\{ \frac{d^{3}f}{dn^{3}} \bigg|_{n=a} - \frac{d^{3}f}{dn^{3}} \bigg|_{n=b} \right\} + \cdots$$

Apply this formula to Equation 18.33 to obtain

$$q_{\text{rot}} = \frac{T}{\Theta_{\text{rot}}} \left\{ 1 + \frac{1}{3} \left(\frac{\Theta_{\text{rot}}}{T} \right) + \frac{1}{15} \left(\frac{\Theta_{\text{rot}}}{T} \right)^2 + O\left[\left(\frac{\Theta_{\text{rot}}}{T} \right)^3 \right] \right\}$$

Calculate the correction to replacing Equation 18.33 by an integral for $N_2(g)$ at 300K; $H_2(g)$ at 300K (being so light, H_2 is an extreme example).

7. 10 points Extra Credit: Problem 18-40 from McQuarrie & Simon:

In Chapter 13, we learned that the harmonic-oscillator model can be corrected to include anharmonicity. The energy of an anharmonic oscillator was given as (Equation 13.21)

$$\tilde{\varepsilon}_{v} = \left(v + \frac{1}{2}\right)\tilde{v}_{e} - \tilde{x}_{e}\tilde{v}_{e}\left(v + \frac{1}{2}\right)^{2} + \cdots$$

where the frequency \tilde{v}_e is expressed in cm⁻¹. Substitute this expression for $\tilde{\varepsilon}_v$ into the summation for the vibrational partition function to obtain

$$q_{\mathrm{vib}}(T) = \sum_{v=0}^{\infty} e^{-\beta \tilde{v}_e \left(v + \frac{1}{2}\right)} e^{\beta \tilde{x}_e \tilde{v}_e \left(v + \frac{1}{2}\right)^2}$$

Now expand the second factor in the summand, keeping only the linear term in $\tilde{x}_e \tilde{v}_e$, to obtain

$$q_{\mathrm{vib}}(T) = \frac{e^{-\Theta_{\mathrm{vib}}/2T}}{1 - e^{-\Theta_{\mathrm{vib}}/T}} + \beta \tilde{x}_e \tilde{v}_e e^{-\Theta_{\mathrm{vib}}/2T} \sum_{v=0}^{\infty} \left(v + \frac{1}{2}\right)^2 e^{-\Theta_{\mathrm{vib}}v/T} + \cdots$$

where $\Theta_{\text{vib}}/T = \beta \tilde{v}_e$. Given that (Problem I-15)

$$\sum_{v=0}^{\infty} v x^v = \frac{x}{\left(1 - x\right)^2}$$

and

$$\sum_{v=0}^{\infty} v^2 x^v = \frac{x^2 + x}{(1 - x)^3}$$

show that

$$q_{\text{vib}}(T) = q_{\text{vib,ho}}(T) \left[1 + \beta \tilde{x}_e \tilde{v}_e \left(\frac{1}{4} + 2q_{\text{vib,ho}}^2(T) \right) + \cdots \right]$$

where $q_{\rm vib,ho}$ is the harmonic-oscillator partition function. Estimate the magnitude of the correction for ${\rm Cl}_2({\rm g})$ at 300K, for which $\Theta_{\rm vib}=805{\rm K}$ and $\tilde{x}_e\tilde{v}_e=2.675{\rm cm}^{-1}$.

Numbered equations:

$$q_{\text{trans}}(V,T) = \left[\sum_{n=1}^{\infty} \exp\left(-\frac{\beta h^2 n^2}{8ma^2}\right)\right]^3$$
 (18.4)

$$q_{\text{rot}}(T) = \sum_{J=0}^{\infty} (2J+1) e^{-\Theta_{\text{rod}}J(J+1)/T}$$
(18.33)

Table 18.2: Molecular constants for several diatomic molecules. These parameters were obtained from a variety of sources and do not represent the most accurate values because they were obtained under the rigid rotator-harmonic oscillator approximation

Molecule	Electronic state	Θ _{vib} /K	$\Theta_{\rm rot}/K$	$D_0/\mathrm{kJmol^{-1}}$	$D_e/\mathrm{kJmol^{-1}}$
H_{2}	$1\sum_{\sigma}^{+}$	6215	85.3	432.1	457.6
D_{2}	$\frac{-g}{1\sum_{\sigma}^{+}}$	4394	42.7	435.6	453.9
Cl_{2}	$ \begin{array}{c} \Sigma \\ 1\Sigma + \\ 1\Sigma + \\ 1\Sigma + \\ \end{array} $	805	0.351	239.2	242.3
Br_{2}	$1\sum_{\sigma}^{\uparrow}$	463	0.116	190.1	191.9
I_{2}	$1\sum_{\sigma}^{\stackrel{\circ}{+}}$	308	0.0537	148.8	150.3
O ₂	$3\sum_{\sigma}^{\infty}$	2256	2.07	493.6	503.0
N_{2}	$ \begin{array}{ccc} & & & \\ & & & \\ &$	3374	2.88	941.6	953.0
CO	_	3103	2.77	1070	1085
NO	$^{2}\Pi_{_{1/_{2}}}$	2719	2.39	626.8	638.1
HCl	$1\Sigma^{+}$	4227	15.02	427.8	445.2
HBr	$^{1}\Sigma^{+}$	3787	12.02	362.6	377.7
HI	$^{1}\Sigma^{+}$	3226	9.25	294.7	308.6
Na2	$ \begin{array}{c} 1\sum_{g} + \\ 1\sum_{g} + \\ \end{array} $	229	0.221	71.1	72.1
K ₂	$^{1}\Sigma_{\mathrm{g}}^{+}$	133	0.081	53.5	54.1