1. Problem 19-7 in McQuarrie & Simon:

Consider an ideal gas that occupies 2.25 L at 1.33 bar. Calculate the work required to compress the gas isothermally to a volume of 1.50 L at a constant pressure of 2.00 bar followed by another isothermal compression to 0.800 L at a constant pressure of 3.75 bar (Figure 19.4). Compare the result with the work of compressing the gas isothermally and reversibly from 2.25 L to 0.800 L.

2. Problem 19-13 in McQuarrie & Simon:

The isothermal compressibility of a substance is given by

$$\beta = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \tag{1}$$

For an ideal gas, $\beta = 1/P$, but for a liquid, β is fairly constant over a moderate pressure range. If β is constant, show that

$$\frac{V}{V_0} = e^{-\beta(P - P_0)} \tag{2}$$

where V_0 is the volume at a pressure P_0 . Use this result to show that the reversible isothermal work of compressing a liquid from a volume V_0 (at a pressure P_0) to a volume V (at a pressure P) is given by

$$w = -P_{0}(V - V_{0}) + \beta^{-1}V_{0}\left(\frac{V}{V_{0}}\ln\frac{V}{V_{0}} - \frac{V}{V_{0}} + 1\right)$$

$$= -P_{0}V_{0}\left[e^{-\beta(P - P_{0})} - 1\right] + \beta^{-1}V_{0}\left\{1 - \left[1 + \beta(P - P_{0})\right]e^{-\beta(P - P_{0})}\right\}$$
(3)

(You need to use the fact that $\int \ln x dx = x \ln x - x$.)

The fact that liquids are incompressible is reflected by β being small, so that $\beta(P-P_0) \ll 1$ for moderate pressures. Show that

$$w = \beta P_{0} V_{0} (P - P_{0}) + \frac{\beta V_{0} (P - P_{0})^{2}}{2} + \mathcal{O}(\beta^{2})$$

$$= \frac{\beta V_{0}}{2} (P^{2} - P_{0}^{2}) + \mathcal{O}(\beta^{2})$$
(4)

Calculate the work required to compress one mole of toluene reversibly and isothermally from 10 bar to 100 bar at 20 °C. Take the value of β to be 8.95×10^{-5} bar⁻¹ and the molar volume to be 0.106 mol L⁻¹ at 20 °C.

3. Problem 19-22 in McQuarrie & Simon:

One mole of ethane at 25 °C and one atm is heated to 1200 °C at constant pressure. Assuming ideal behavior, calculate the values of w, q, ΔU , and ΔH given that the molar heat capacity of ethane is given by

$$\overline{C}_{P}/R = 0.06436 + (2.137 \times 10^{-2} \,\mathrm{K}^{-1}) T$$
$$- (8.263 \times 10^{-6} \,\mathrm{K}^{-2}) T^{2} + (1.024 \times 10^{-9} \,\mathrm{K}^{-3}) T^{3}$$

over the above temperature range. Repeat the calculation for a constant-volume process.

4. Problem 19-27 in McQuarrie & Simon:

In this problem, we will derive a general relation between C_P and C_V . Start with U = U(P,T) and write

$$dU = \left(\frac{\partial U}{\partial P}\right)_T dP + \left(\frac{\partial U}{\partial T}\right)_P dT \tag{1}$$

We could also consider V and T to be the independent variables of U and write

$$dU = \left(\frac{\partial U}{\partial V}\right)_T dV + \left(\frac{\partial U}{\partial T}\right)_V dT \tag{2}$$

Now take V = V(P, T) and substitute its expression for dV into Equation 2 to obtain

$$dU = \left(\frac{\partial U}{\partial V}\right)_T \left(\frac{\partial V}{\partial P}\right)_T dP + \left[\left(\frac{\partial U}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P + \left(\frac{\partial U}{\partial T}\right)_V\right] dT$$

Compare this result with Equation 1 to obtain

$$\left(\frac{\partial U}{\partial P}\right)_{T} = \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial P}\right)_{T} \tag{3}$$

and

$$\left(\frac{\partial U}{\partial T}\right)_{P} = \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P} + \left(\frac{\partial U}{\partial T}\right)_{V} \tag{4}$$

Last, substitute U = H - PV into the left side of Equation (4) and use the definitions of C_P and C_V to obtain

$$C_{P} - C_{V} = \left[P + \left(\frac{\partial U}{\partial V} \right)_{T} \right] \left(\frac{\partial V}{\partial T} \right)_{P}$$

Show that $C_P - C_V = nR$ if $(\partial U/\partial V)_T = 0$, as it is for an ideal gas.

5. Problem 19-50 in McQuarrie & Simon:

Use the van der Waals equation to calculate the minimum work required to expand one mole of CO₂(g) isothermally from a volume of 0.100 dm³ to a volume of 100 dm³ at 273 K. Compare your result with that which you calculate assuming ideal behavior.

6. Extra credit: Problem 19-55 in McQuarrie & Simon:

Use the rigid rotator-harmonic oscillator model and the data in Table 18.2 to plot $\overline{C}_P(T)$ for CO(g) from 300 K to 1000 K. Compare your result with the expression given in Problem 19–43.

Expression from Problem 19–43:

$${\rm C_{\it P}^{\circ}[CO(g)]/\it R} = 3.231 + \left(8.379 \times 10^{-4}\,{\rm K^{-1}}\right)T - \left(9.86 \times 10^{-8}\,{\rm K^{-2}}\right)T^2$$

Table 18.2: Molecular constants for several diatomic molecules. These parameters were obtained from a variety of sources and do not represent the most accurate values because they were obtained under the rigid rotator-harmonic oscillator approximation

Molecule	Electronic state	$\Theta_{\mathrm{vib}}/\!\!/\mathrm{K}$	Θ_{rot}/K	$D_0/\mathrm{kJmol^{-1}}$	$D_e/\mathrm{kJmol^{-1}}$
H_{2}	$1\sum_{\sigma}^{+}$	6215	85.3	432.1	457.6
D_{2}	$1\sum_{\sigma}^{g}$	4394	42.7	435.6	453.9
$\overline{\text{Cl}}_{2}$	$1\sum_{g}^{g}$	805	0.351	239.2	242.3
Br_{2}	$1\Sigma^{+}$	463	0.116	190.1	191.9
I_{2}	$1\Sigma^{+}$	308	0.0537	148.8	150.3
O_{2}	$3\Sigma^{\circ}$	2256	2.07	493.6	503.0
N_{2}	$ \begin{array}{c} $	3374	2.88	941.6	953.0
CO	$1\Sigma^{\stackrel{\diamond}{+}}$	3103	2.77	1070	1085
NO	$^{2}\Pi_{_{1/_{2}}}$	2719	2.39	626.8	638.1
HCl	$1\Sigma^{+}$	4227	15.02	427.8	445.2
HBr	$^{1}\Sigma^{+}$	3787	12.02	362.6	377.7
HI	$^{1}\Sigma^{+}$	3226	9.25	294.7	308.6
Na2	$ \begin{array}{c} 1\sum_{g} + \\ 1\sum_{g} + \\ \end{array} $	229	0.221	71.1	72.1
K ₂	$^{1}\Sigma_{g}^{\stackrel{\diamond}{+}}$	133	0.081	53.5	54.1