1. Problem 22–24 in McQuarrie & Simon:

We can derive the Gibbs-Helmholtz equation directly from Equation 22.31 (a) in the following way. Start with $(\partial^G/\partial T)_p = -S$ and substitute fro S from G = H - TS to obtain

Problem Set 6

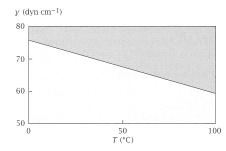
$$\frac{1}{T} \left(\frac{\partial G}{\partial T} \right)_{p} - \frac{G}{T^{2}} = -\frac{H}{T^{2}}$$

Now show that the left side is equal to $(\partial^{[G/T]}/\partial T)_p$ to get the Gibbs-Helmholtz equation.

- 2. The surface tension of water is observed to decrease linearly with temperature (in experiments at constant p and a): $\gamma(T) = b cT$, where T = temperature (in °C), b = 75.6 erg cm⁻² (the surface tension at 0 °C) and c = 0.1670 erg cm⁻² deg⁻¹.
 - (a) If γ is defined by $dU = TdS pdV + \gamma da$, where da is the area change of a pure material, give γ in terms of a derivative of the Gibbs free energy at constant T and p.
 - (b) Using a Maxwell relation, determine the quantitative value of $(\partial S/\partial a)_{p,T}$ from the relationships above.
 - (c) Estimate the entropy change ΔS from the results above if the area of the water/air interface increases by 4 Å^2 (about the size of a water molecule).
- 3. (a) Show that, in general, for quasi-static processes:

$$\left(\frac{\partial C_p}{\partial p}\right)_T = -T \left(\frac{\partial^2 V}{\partial T^2}\right)_p$$

- (b) Based on (a), show that $(\partial C_p/\partial p)_T = 0$ for an ideal gas.
- 4. The figure below shows the surface tension of water as a function of temperature.



- (a) From the figure, determine the numerical value of $(\partial \gamma / \partial T)_{p,N,A}$, where T = temperature, p = pressure, and A = surface area.
- (b) Find the Maxwell relation for the partial derivative equal to $(\partial \gamma/\partial T)_{p,N,A}$.
- (c) Write an expression for the enthalpic and entropic components of the surface tension γ .

- (d) Combining the results from above, compute the numerical values of the enthalpic and entropic parts of γ at $T=300\,\mathrm{K}$, and comment on which component dominates the surface tension.
- 5. (a) Start with Problem 22-54 in McQuarrie & Simon:

When a rubber band is stretched, it exerts a restoring force, f, which is a function of its length L and its temperature T. The work involved is given by

$$w = \int f(L, T) dL \tag{1}$$

Why is there no negative sign in front of the integral, as there is in Equation 19.2 for P-V work? Given that the volume change upon stretching a rubber band is negligible, show that

$$dU = TdS + fdL (2)$$

and that

$$\left(\frac{\partial U}{\partial L}\right)_T = T\left(\frac{\partial S}{\partial L}\right)_T + f \tag{3}$$

Using the definition A = U - TS, show that Equation 2 becomes

$$dA = -SdT + fdL \tag{4}$$

and derive the Maxwell relation

$$\left(\frac{\partial f}{\partial T}\right)_{I} = -\left(\frac{\partial S}{\partial L}\right)_{T} \tag{5}$$

Substitute Equation 5 into Equation 3 to obtain the analog of Equation 22.22

$$\left(\frac{\partial U}{\partial L}\right)_{T} = f - T\left(\frac{\partial f}{\partial T}\right)_{L}$$

For many elastic systems, the observed temperature-dependence of the force is linear. We define an *ideal rubber band* by

$$f = T\phi(L)$$
 (ideal rubber band) (6)

Show that $(\partial U/\partial L)_T = 0$ for an ideal rubber band. Compare this result with $(\partial U/\partial V)_T = 0$ for an ideal gas.

Now let's consider what happens when we stretch a rubber band quickly (and, hence, adiabatically). In this case, dU = dw = f dL. Use the fact that U depends upon only the temperature for an ideal rubber band to show that

$$dU = \left(\frac{\partial U}{\partial T}\right)_{L} dT = f dL \tag{7}$$

The quantity $(\partial U/\partial T)_L$ is a heat capacity, so Equation 7 becomes

$$C_L dT = f dL (8)$$

Argue now that if a rubber band is suddenly stretched, then its temperature will rise. Verify this result by holding a rubber band against your upper lip and stretching it quickly.

- (b) Given what you've derived, do you predict that a rubber band will stretch or shrink when you heat it?
- (c) Can you think of a molecular explanation for this process? (Hint: what happens to the entropy, *S*, as you stretch the band?)

Due Thursday, March 27, 2014

Numbered equations:

$$\left(\frac{\partial G}{\partial T}\right)_{p} = -S \tag{22.31 (a)}$$

$$w = -\int_{V_i}^{V_f} P_{\text{ext}} dV \tag{19.2}$$

$$\left(\frac{\partial U}{\partial V}\right)_{T} = -P + T\left(\frac{\partial P}{\partial T}\right)_{V} \tag{22.22}$$